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Abstract

Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of
innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV
coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-
terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new
fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the
two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions
demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of
the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of
the nanoparticles at 37uC (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune
response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in
animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important
criterion in the design of a new vaccine.
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Introduction

Papaya mosaic virus (PapMV) is a member of the large family of

Flexiviridae in the genus Potexvirus. The virus has a flexuous rod

shape of 500 nm in length and 14 nm in diameter made of a single

viral capsid protein (CP) and the genomic positive sense RNA [1].

We have previously shown that expression of PapMV CP in

bacteria (E. coli) leads to production of virus like particles (VLPs) or

nanoparticles that can be affinity-purified easily using a 6xH tag

[2]. The nanoparticles are non-infectious and are similar in shape

and appearance to the wild type virus purified from infected plants

[2].

In the last few years, we have shown that PapMV nanoparticles

can be used as a vaccine platform via the fusion of a peptide

antigen to the C-terminus of the PapMV CP [3,4,5,6]. In fact, the

capacity of producing a long-lasting humoral response has been

exploited to produce antibodies against a fused HCV immuno-

genic epitope that was demonstrated to present the peptide in the

appropriate conformation [4]. Also, fusion of the universal M2e

peptide antigen derived from influenza M2 protein was showed to

trigger a protective humoral response against a lethal influenza

infection in mice [3]. For each of those fusions and others [7], self-

assembly of the recombinant PapMV CP into nanoparticles

ranging from 60 to 100 nm in length was shown to be critical to

the induction of an efficient humoral response to the fused peptide

antigen [3,4]. We have also shown that PapMV nanoparticles can

trigger a cytotoxic (CTL) immune response to a fused CTL

epitope through loading of MHC class I and the proliferation of

CD8+ human T cells [6]. In another study, fusion of the p33 CTL

epitope derived from the lymphocytic choriomeningitis (LCMV)

surface glycoprotein to PapMV CP was sufficient to provide

complete protection to a LCMV challenge [5].

PapMV nanoparticles can also be used as an adjuvant to larger

antigens and proteins. We showed an improved IgG2a response to

the Salmonella typhi porin OmpC [8], which led to better protection

to a challenge with this pathogen. We also demonstrated an

improvement in the seasonal flu vaccine using PapMV nanopar-

ticles, with an increased humoral and CTL response to a

conserved epitope of the virus leading to protection against a

heterosubtypic strain of influenza [9]. Thus, taken together, these

results show that PapMV nanoparticles can be used successfully as

a vaccine platform [3,4,5,6] and an adjuvant [8,9] to improve the

humoral and CTL response to a given peptide or large protein

antigen [5,6,9]. Finally, it is also recognized that PapMV

nanoparticles are perceived by immune cells as a pathogen-

associated pattern (PAMP) [8,9].

However, while the PapMV vaccine platform is clearly versatile,

and has been shown to tolerate the fusion of several peptides to its

C-terminus [3,4,5,6,7], it is also possible that the fusion of certain

peptides could interfere with the assembly process of the protein
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into nanoparticles and consequently affect its ability to trigger a

proper immune response. It is therefore of interest to search for

other sites of fusion in the PapMV CP to improve this vaccine tool.

Considering that fusion might disrupt the nearby structure by

modifying the surrounding charge and hydrophobicity of the

protein, our goal was to find other sites of fusion in the PapMV CP

that can tolerate the fusion of a short epitope: the influenza HA11

epitope. In this study, we tested seven new sites of fusion through

insertion of HA11 peptide into PapMV CP and evaluated the

capacity of those newly engineered VLPs to trigger a proper

immune response to the HA11 antigen.

Results

Insertion of the HA11 peptide into 7 putative surface
exposed sites of the PapMV-CP

Expression of PapMV-CP in E. coli leads to the formation of

nanoparticles that have a morphology comparable to the wild type

virus [2]. Our objective was to evaluate the capacity of the PapMV

platform to tolerate fusion of the HA11 peptide leading to the

formation of nanoparticles. The HA11 epitope was chosen for

fusion given its small length and the availability of commercial

tools to study this epitope. A glycine residue was introduced at the

N-terminus of the HA11 epitope to disrupt any secondary

structure of the PapMV that could be created by the insertion of

the HA11 peptide. Fusions were made at 7 specific sites in the

capsid protein taking into consideration the bioinformatic

prediction of the secondary structure of PapMV from Lecours

(2006). Thereby, our attempts at fusions were made in

unstructured regions of the PapMV CP located between highly

ordered a-helices and b-sheets of the protein after the residues 12,

33, 84, 122, 134, 162, 187, and finally at the extreme C-terminus

of the protein as our control point of fusion (Figure 1). A fusion was

made after position 12, but not beyond that point, because of the

F13 residue in the PapMV N-terminus that was shown previously

to play an important role in the self-assembly of PapMV

nanoparticles [10].

Recombinant proteins harbouring the fusion at position 33, 84,

122, 134 and 162 led to the production of unstable proteins that

could not be studied. However, we were able to isolate large

amounts of the recombinant proteins harbouring fusions located

after the residues 12 and 187 and, as expected, at the C-terminus

(Figure 2AB). As observed by TEM, the three recombinant

proteins (PapMV-HA11-12, PapMV-HA11-187 and PapMV-

HA11-C) could self-assemble into nanoparticles that were similar

in appearance to other recombinant nanoparticles reported

previously by our group (Figure 2C) [3,4,5,6,7]. Dynamic light

scattering (DLS) revealed that PapMV-HA11-12 and C yielded

shorter VLPs with an average size of 67 nm and 66 nm,

respectively (Figure 2D). PapMV-HA11-187 had a length of

74 nm. Those lengths are in agreement with the approximate

length of PapMV nanoparticles observed by electron microscopy

(Figure 2C).

The peptide HA11 is exposed at the surface of
engineered PapMV nanoparticles

To evaluate the surface availability of the HA11 peptide on the

recombinant nanoparticles, we performed an immunoprecipita-

tion using an HA11 monoclonal antibody. PapMV nanoparticles

without fusions were efficiently recognized by anti-PapMV mouse

serum (Figure 3, lane 1) but not by an HA11 specific monoclonal

antibody (Figure 3, lane 2). All the PapMV nanoparticles fused to

the HA11 epitope were efficiently immunoprecipitated using the

monoclonal HA11-specific monoclonal antibody (Figure 3, lane 3–

5) suggesting that the HA11 epitope is available at the surface of

the recombinant nanoparticles. This suggests that the HA11

epitope has the right conformation and that it is available for

interaction with B-lymphocytes.

Characterization of biochemical and biophysical
properties of recombinant PapMV nanoparticles

Each fusion can potentially influence the structure of the

PapMV CP comprising the nanoparticles and therefore affect

nanoparticle stability. To evaluate the stability of the nanoparti-

cles, we evaluated their ability to tolerate heat. Any conforma-

tional change in the nanoparticles was monitored by examining

CD spectra (CD) and DLS at increasing temperatures. The CD

spectra taken at a wave length of 208 nm—the major absorption

point for the PapMV a-helices—revealed that the fusion to

Figure 1. PapMV amino acid sequence and structure. PapMV capsid protein amino acid sequence with each site of fusion and a bioinformatic
secondary structure prediction (adapted from Lecours 2006).
doi:10.1371/journal.pone.0031925.g001

Engineering of PapMV at Surface Exposed Sites
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position 187 and at the C-terminus were more sensitive to heat

since a change in the secondary structure was measured with

temperature exceeding 30uC (see dashed arrow in Figure 4).

Interestingly, the point of inflection of the PapMV-HA11-12

nanoparticles was found at approximately 40uC (Figure 4; black

arrow), and these nanoparticles appear to be more stable than the

other 2 recombinant nanoparticles.

We hypothesized that changes in secondary structure induced

by heat will lead to partial denaturation of the PapMV CP, which

will consequently expose hydrophobic residues at the surface of the

PapMV nanoparticles and lead to aggregation of the VLPs. To

validate this hypothesis, we used DLS to measure precisely the

aggregation state of the nanoparticles in solution (Figure 5). The

three recombinant nanoparticles showed a similar average size of

75, 70 and 80 nm, respectively, for the PapMV-HA11-12, 187

and C-terminus at 20uC. Upon heating, we observed that PapMV-

HA11-187 formed large aggregates when the temperature

exceeded 25uC. The same phenomenon occurs with the

Figure 2. PapMV-HA11 recombinant proteins. The three PapMV-HA11 fusions produced have characteristics similar to those of PapMV
nanoparticles. (A) The sequence of the PapMV-CP-HA11 proteins produced. (B) Bacterial lysate of the culture before induction (first lane), after
induction with IPTG (second lane), and after successful purification with nickel beads, third lane, of PapMV-CP-HA11-12 (lane 1–3), 187 (lane 4–6) and
C (lane7–9). (C)Transmission electron microscope images of each HA11 fusion. (D) Size of VLPs recorded by dynamic light scattering (DLS).
doi:10.1371/journal.pone.0031925.g002

Engineering of PapMV at Surface Exposed Sites
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PapMV-HA11-C construct when the temperature exceeded 30uC,

and, finally, the PapMV-HA11-12, which was the most stable,

showed formation of large aggregates when the temperature

exceeded 40uC. These results are consistent with the data obtained

with the CD readout and suggest that PapMV-HA11-12 is the

most stable VLP of the three recombinant VLPs produced with

the HA-11 antigen in fusion.

Correlation between nanoparticle stability and their
immunogenicity

The results described above showed that PapMV CP undergoes

conformational changes at elevated temperature that lead to

partial denaturation and aggregation of the nanoparticles.

PapMV-HA11-187 and C started to aggregate at 25 and 30uC,

respectively, i.e., temperatures lower than mouse body tempera-

ture (36.9uC). Interestingly, PapMV-HA11-12 remains stable at

temperatures exceeding this threshold. To determine the impact of

particle aggregation on immunogenicity, we injected Balb/C mice,

5 per group, with 100 mg PapMV nanoparticles of each

construction. We evaluated the humoral response triggered against

the HA11 peptide (Figure 6 A–B) and to naked PapMV

nanoparticles (Figure 6 C–D). Total IgG titres as well as the

IgG2a isotype titres were measured. We found that PapMV-

HA11-12 nanoparticles were by far the most immunogenic, and

the only particles able to trigger a very high humoral response

against the HA11 peptide (Figure 6 A–B). PaMV-HA11-187 and

C were unable to produce a significant immune response to the

HA11 peptide. As expected, the PapMV-HA11-12 construct also

showed a significantly higher humoral total IgG response against

the PapMV vaccine platform then the PapMV-HA11-187

(Figure 6 C–D). Although total IgG titres of PapMV-HA11-12

and C were similar, PapMV-HA11-12 had a significantly higher

IgG2a response against the PapMV platform. PapMV-HA11-C,

which was shown to be more stable than PapMV-HA11-187,

showed a higher total IgG and IgG2a response to PapMV than

PapMV-HA11-187.

Discussion

Using the HA11 peptide as a model antigen, we tested 8

different sites of fusion on the PapMV CP and evaluated the ability

of the resulting constructs to self-assemble into nanoparticles. Only

three sites were shown to tolerate the fusion—the others leading to

unstable proteins. These three sites were the C-terminus, and

positions directly after amino acid 187 and amino acid 12, near the

N-terminus. These three different recombinant proteins led to the

formation of nanoparticles that present HA11 at their surface.

Our laboratory has previously confirmed on several occasions

that the C-terminus of the PapMV CP is located at the surface of

the VLPs, and leads to the development of a humoral [3,4] or

cytotoxic immune response [5,6]. Recently, the C-terminus of

potato virus X (PVX) CP, the type member of the potexvirus

family, was shown to be exposed at the surface of the virus particle

[11]. Therefore, it is reasonable to expect the CP of other

members of the same group to tolerate fusion at this position. We

showed that it is possible to fuse a peptide at the N-terminus (after

amino acid 12) of the PapMV CP and still get self-assembly into

VLPs. Fusion at the N-terminus of the PVX CP was also shown to

be tolerated and to lead to the formation of virus particles in a

plants [11,12,13,14,15]. In addition, the N-terminus was predicted

to be located at the surface of the potato virus X using tritium

planigraphy [16,17]. Another potexvirus, the bamboo mosaic virus

(BaMV) was also showed to support substitution of its native N-

terminus by a large peptide of 37 amino acids derived from the

VP1 protein of foot and mouth disease virus (FMDV) [18]. Our

results confirm, and are in agreement with those reports, since we

showed that the N-terminus of PapMV coat protein is exposed at

the surface and can be used efficiently as a site of fusion for an

epitope.

Figure 3. Immunoprecipitation and western blot of PapMV
with or without HA11 fusion. PapMV was immunoprecipitated with
anti-PapMV mouse serum (lane 1) and with anti-HA11 monoclonal
antibody (lane 2). PapMV-HA11-12, 187 and C are immunoprecipitated
by anti-HA11 monoclonal antibody (lane 3–5) confirming that the HA11
peptide is at the surface.
doi:10.1371/journal.pone.0031925.g003

Figure 4. Structural changes in PapMV CP in the different recombinant nanoparticles induced by an increase in temperature. Each of
the recombinant nanoparticles (PapMV-HA11-12, PapMV-HA11-187 and PapMV-HA11-C) at a concentration of 0.1 mg/ml were heated in steps of 1uC
and secondary structure changes of the protein was monitored by circular dichroism. The read-out was performed at a wave length of 208 nm. The
arrows show the point of inflection for each of the nanoparticles. The black bar represents the body temperature of mice (36.9uC).
doi:10.1371/journal.pone.0031925.g004
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We show here for the first time in the potexvirus group, that it is

possible to perform a fusion in the interior of the CP after amino

acid 187 and maintain the ability to self-assemble and form VLPs.

Nanoparticles harbouring a fusion after amino acid 12, 187 or at

the C-terminus were very similar in appearance except that fusions

made at the N-terminus and C-terminus appeared to be slightly

shorter as compared to other fusions.

Interestingly, nanoparticles harbouring a fusion after amino

acid 12 (PapMV-HA11-12) were more stable, and were the only

nanoparticles able to trigger an immune response to the HA

Figure 5. Aggregation of recombinant nanoparticles upon heating. Each of the recombinant nanoparticles at a concentration of 0.1 mg/ml
were heated by steps of 5uC and DLS spectra of the samples was measured. The approximate size of the particles measured indicates the level of
aggregation of the samples. The arrows show the point of inflection for each of the nanoparticles. The black bar represents the body temperature of
mice (36.9uC).
doi:10.1371/journal.pone.0031925.g005

Figure 6. Stable nanoparticles are more immunogenic in animals. Balb/C mice (5 per groups) were immunized twice with a 14-day interval
with 100 mg s.c. of PapMV-HA11-12, PapMV-HA11-187 or PapMV-HA11-C, respectively. The total IgG (A) or the IgG2a (B) humoral response directed to
the HA11 peptide was measured by ELISA. Also, the total IgG (C) and IgG2a (D) directed to the PapMV CP was measured by ELISA. *** P,0.0001
**P,0.01.
doi:10.1371/journal.pone.0031925.g006
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peptide. It is likely that the CP of the unstable nanoparticles are

denaturated at 37uC when injected into animals, which leads to

the presentation of hydrophobic residues at the surface of the

VLPs that in turn lead to non-specific aggregation of degraded

material that is less immunogenic. This result revealed the

importance of maintaining the highly repetitive and crystalline

structure of the nanoparticles after injection into animals to insure

an optimal immune response to the target HA peptide. Our results

also suggest that measuring the stability of the nanoparticles using

the CD spectrum and DLS is a good way of predicting the ability

of a newly engineered VLPs to trigger an efficient immune

response to the peptide of interest.

To make the link between the experiments presented in this

manuscript and previous work published by our group, we have

evaluated the stability of the PapMV-M2e-C construct harbouring

the fusion of the M2e peptide (28 a.a.) of influenza virus to the C-

terminus of the PapMV CP previously described by our group [3].

We showed that this fusion lead to production of nanoparticles

that are unstable at temperature exceeding 30uC (Figure S1-D).

This is similar to the PapMV-HA11-C construct that was showed

to be not immunogenic (Figure 5). Even if they are unstable at

37uC, the PapMV-M2e-C nanoparticles were shown to trigger a

significant immune response to the M2e peptide and trigger

protection to an influenza challenge. This response was further

improved by addition of PapMV nanoparticles (without fusion)

probably because they are more stable and better adjuvant. Based

on the present study, it is likely that the of fusion at the C-terminus

for this peptide is not optimal.

In an attempt to stabilise the PapMV nanoparticles harbouring

the M2e peptide, we have produced the constructs PapMV-M2e-

12 (Figure S1-A). We could produce and purify the chimeric

protein easily but we were unable to get nanoparticles with this

construct. The fusion of the M2e peptide inhibited the self

assembly of the protein and lead to production of small aggregates

(Figure S1- B). Therefore, we did not pursue with immunization of

animals with those proteins.

PapMV nanoparticles are very immunogenic and a strong

humoral response is usually directed to the PapMV CP that is the

building block of the nanoparticles. We previously showed that

pre-existing antibodies directed to PapMV do not affect the ability

of the PapMV nanoparticles to boost the humoral response toward

the antigen [3,4,20]. We have also validated this observation by

measuring the antibody response directed to the PapMV CP and

the HA11 peptide 14 days after one immunization with the

PapMV-HA11-12, PapMV-HA11-187 and PapMV-HA11-C

respectively (Figure S2). We showed that only the PapMV-

HA11-12 nanoparticles can mount a IgG2a response to HA11

(Fig. S2-B) and a significant IgG and IgG2a response to PapMV

(Figure S2-CD). Therefore, even if high titers of antibodies

directed to the PapMV are present in the animal when the boost is

being administered, the second injection with PapMV-HA11-12

lead to a significant improvement of the immune response directed

to the HA11 peptide (Figure 6). Consistent with previous

observations, we propose that pre-existing antibodies to the

PapMV CP do not affect the ability of PapMV nanoparticles to

further boost the immune response to the HA11 peptide.

In conclusion, our data suggest that it is important to evaluate

the stability of future fusions to eliminate from screening programs

any VLPs that are unstable, and thus less immunogenic, at body

temperature. This process would increase the production and

study effectiveness of the PapMV as a vaccine platform. This

manuscript also reveals the plasticity of the PapMV vaccine

platform since three different sites are now available to perform

fusions. It is likely that it will be possible to produce stable PapMV

nanoparticles through a fusion after amino acid 187 if the context

of the fusion is changed or if peptide other than HA11 that is less

detrimental to the stability of the nanoparticles is used.

Materials and Methods

Production of PapMV nanoparticles
Oligonucleotides used in PCR for the insertion of the HA11

fusion are described in Table 1. The resulting linear vector

harbouring the HA11 coding region fused to the PapMV was

digested with Acc651 restriction enzyme and ligated using T4 DNA

ligase (New Englands Biolabs). Expression and purification of

PapMV nanoparticles fused to the HA11 peptide was performed

as described previously [3]. The production of M2e fusion in

PapMV was done as described previously [3]. Levels of expression

for each recombinant nanoparticle were determined by SDS-

PAGE. LPS contamination was always less than 50 endotoxin

(EU) units/mg of protein for viable nanoparticles. The size and

structure of the nanoparticles were confirmed by observation on a

TEM (JEOL -1010, Tokyo, Japan).

SDS-PAGE and electroblotting
Samples were mixed with one-third of the final volume of

loading buffer containing 5% SDS, 30% glycerol and 0.01%

bromophenol blue. SDS-PAGE was performed as described

elsewhere [19].

Immunoprecipitation and western blotting
One microgram of each nanoparticle was immunoprecipitated

using monoclonal antibody against the HA11 epitope (Cedarlane,

cat# CLH104AP, Burlington, Canada) and mice sera against

PapMV at a dilution of 1:150 in TBS containing 1 mg/ml BSA and

incubated at 4uC on a shaking table for 1 hour. Sheep anti-mouse

IgG secondary antibodies coupled with magnetic dynabeads (Dynal

AS, cat# 112.01D, Invitrogen) were used to link primary

antibodies. Western blotting was performed by SDS-PAGE and a

semi-dry transfer on nitrocellulose membrane. Membrane were

blocked with 5% milk and samples were revealed with anti-PapMV

rabbit antibodies and anti-rabbit antibodies coupled with alkaline

phosphatase diluted 1:10 000 in the blocking buffer.

Dynamic light scattering
The size of nanoparticles was recorded with a ZetaSizer Nano

ZS (Malvern, Worcestershire, United Kingdom) at a temperature

of 10uC at a concentration of 0.1 mg/ml diluted in PBS 16. The

variation in nanoparticle size induced by temperature variations

was measured according to the same experimental conditions.

Circular dichroism spectroscopy
CD spectra were recorded on a Jasco J-815 (Easton, MD, USA)

at temperatures ranging from 15uC to 50uC with 1uC steps. A

concentration of 0.1 mg/ml of each protein was read in a 1 mm

light path quartz cell at a wavelength of 208 nm. Samples were

heated to the target temperature, and held at that temperature for

5 seconds before measuring the ellipticity as calculated elsewhere

[19].

Immunization
Five 6- to 8-week-old BALB/c mice were injected subcutane-

ously with: (i) 100 mg of PapMV nanoparticles; (ii) 100 mg of

PapMV nanoparticles and 5 mg of HA11 peptide; or (iii) 100 mg of

PapMV-HA11 nanoparticles of each fusion. A booster shot was

Engineering of PapMV at Surface Exposed Sites
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given 2 weeks after the first injection and blood samples were

obtained 2 weeks after the boost.

ELISA quantification
ELISA was performed as described elsewhere [9] using GST-HA11

at 1 mg/ml and PapMV-CP nanoparticles at 0.1 mg/ml as bait. GST-

HA11 was produced through a C-terminal fusion of the HA11 antigen

on the PGEX-2T vector (GE Healthcare) and affinity purified

according to standard procedures. Serial dilutions of mice sera were

done by two-fold steps starting at 1:50. Results are expressed as an

antibody endpoint titer greater than three-fold OD of the background

value consisting of preimmune sera. Data were analyzed with a

parametric ANOVA test. Tukey’s post tests were used to compare

differences in antibody titres among groups of mice. Values of

**p,0.01 and ***p,0.0001 were considered statistically significant.

Statistical analyses were performed with GraphPad PRISM 5.01.

Ethics statement
All the work with animals has been done with Institution

approved ethics protocol by the ‘Comité de Protection des

Animaux - CHUQ (CPA-CHUQ). The approval of this project

is found under the authorization number 2010148-1.

Supporting Information

Figure S1 Stability of PapMV-M2e-C nanoparticles. (A)

Schematic representation of the fusion made on the PapMV CP

with the M2e peptide. (B) Electron microscopy micrographs of

PapMV-M2e-12 and (C) PapMV-M2e-C. (D) Aggregation of the

PapMV-M2e-C nanoparticles upon heating as measured using

dynamic light scattering (DLS). The dotted line represent the body

temperature of mice.

(TIF)

Figure S2 Immune response after one immunization.
Balb/C mice (5 per groups) were immunized once with 100 mg s.c.

of PapMV-HA11-12, PapMV-HA11-187 or PapMV-HA11-C,

respectively. Sera were harvested 14 days following the first

immunization. The total IgG (A) or the IgG2a (B) humoral

response directed to the HA11 peptide was measured by ELISA.

Also, the total IgG (C) and IgG2a (D) directed to the PapMV CP

was measured by ELISA. *** P,0.0001.

(TIF)
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Table 1. Forward and reverse oligonucleotides used to produce the seven PapMV-HA11 recombinant proteins.

Name Oligonucleotide sequence

HA12

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGTTCCCCGCCATCACCCAGGAAC-39

Reverse 59-ACGTGGTACCCGGCTATGTTGGGTGTGGATGC-39

HA33

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGCCCTCCCAAGAGCAGTTAAAG-39

Reverse 59-ACGTGGTACCCCAGAAGATTGGACGTTGGATC-39

HA84

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGCCGGAGATATCACTGGCACAA-39

Reverse 59-ACGTGGTACCCTATTGATGATGGGCCAGTCAC-39

HA122

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGCCTGCCAATTGGGAGGCCTCA-39

Reverse 59-ACGTGGTACCCAGCCATTTTGTCCGTCCTCAG-39

HA134

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGAGCGCCAAATTTGCCGCGTTC-39

Reverse 59-ACGTGGTACCCTGGCTTGTATCCTGAGGCCTC-39

HA162

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGCCGACCCAGGAAGAGCGGATT-39

Reverse 59-ACGTGGTACCCCGACCTGGTTAGTCCCGAAGG-39

HA187

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGAACAACTTTGCCAGCAACTCC-39

Reverse 59-ACGTGGTACCCGTCCTGTGCCGCGGCTTGGAA-39

HAC

Forward 59-ACGTGGTACCCGTACGACGTTCCGGATTACGCGACGCGTCACCATCACCATCAC-39

Reverse 59-ACGTGGTACCCACTAGTTTCGGGGGGTGGAAG-39

The sequences in bold and ithalic correspond to the Acc651 restriction site.
doi:10.1371/journal.pone.0031925.t001
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